How do you simplify #3(tan^2 theta - sec^2 theta)#?

2 Answers
Aug 5, 2015

#3(tan^2(theta)-sec^2(theta))=- 3#

Explanation:

#tan(theta) = (sin(theta))/(cos(theta))#
#color(white)("XXXX")##color(white)("XXXX")##rarr tan^2(theta) = sin^2(theta)/cos^2(theta)#

#sec(theta) = 1/cos(theta)#
#color(white)("XXXX")##color(white)("XXXX")##sec^2(theta)=1/cos^2(theta)#

#tan^2(theta) - sec^2(theta)#
#color(white)("XXXX")##color(white)("XXXX")##=sin^2(theta)/cos^2(theta) - 1/cos^2(theta)#

#color(white)("XXXX")##color(white)("XXXX")##=(sin^2(theta)-1)/(cos^2(theta)#

and since #sin^2(theta)+cos^2(theta) = 1#
#color(white)("XXXX")##color(white)("XXXX")##= (-cos^2(theta))/cos^2(theta)#

#color(white)("XXXX")##color(white)("XXXX")## = - 1#

#3(tan^2(theta)-sec^2(theta))#
#color(white)("XXXX")##color(white)("XXXX")##=- 3#

Aug 6, 2015

You can use the identity:

#1+tan^2theta = sec^2theta#

#=> 3(tan^2theta - (1+tan^2theta))#

#= 3(tan^2theta - 1 - tan^2theta)#

#= 3(-1) = color(blue)(-3)#