How do you verify #cos^4(x)-sin^4(x)=cos2x# using the double angle identity?

2 Answers
Aug 9, 2015

#cos(2x)=cos(x+x)=cos^2x-sin^2x#

Explanation:

Factor the left hand side. It is the difference of two squares.

#(cos^2x+sin^2x)(cos^2x-sin^2x)=cos(2x)#

From the Pythagorean identity we know that

#cos^2x+sin^2x=1# so we can write

#cos^2x-sin^2x=cos(2x)#

Now

#cos(2x)=cos(x+x)#

From the angle sum identity we have

#cos(2x)=cos(x+x)=cos(x)cos(x)-sin(x)sin(x)#

#cos(2x)=cos(x+x)=cos^2x-sin^2x#

Which shows that the original equation is true

Aug 10, 2015

Simplify #cos^4 x - sin^4 x#

Explanation:

#cos^4 x - sin^4 x = (cos^2 x + sin^2 x) (cos^2 x - sin^2 x)#=
= cos 2x

Reminder of 2 trig identities:
#cos^2 x + sin^2 x = 1#
#cos^2 x - sin^2 x = cos 2x#