Find dy/ddx for xy² - sin(x+2y)= 2x?

1 Answer
Aug 20, 2015

#dy/dx=(2-y^2+cos(x+2y))/(2xy +2)#

Explanation:

Starting from the equation

#xy^2-sin(x+2y)=2x#

We differentiate both sides of the equation, using #d/dx#

#d/dx(xy^2-sin(x+2y))=d/dx(2x)#
#d/dx(xy^2)-d/dx(sin(x+2y))=d/dx(2x)#
#x d/dx(y^2) + y^2(1)-cos(x+2y)d/dx(x+2y)=2#
#x 2ydy/dx + y^2-cos(x+2y)d/dx(x)+d/dx(2y)=2#
#x 2ydy/dx + y^2-cos(x+2y)+2dy/dx=2#
#2xydy/dx +2dy/dx=2-y^2+cos(x+2y)#
#dy/dx(2xy +2)=2-y^2+cos(x+2y)#
#dy/dx=(2-y^2+cos(x+2y))/(2xy +2)#