How do you solve #sqrt(3x + 1) = -10#?

1 Answer
Aug 24, 2015

#x=33#

Explanation:

#sqrt(3x+1)=-10#

Square both sides of the equation.

(#sqrt(3x+1))^2=(-10)^2#

#3x+1=100#

Subtract #1# from both sides.

#3x=100-1##=#

#3x=99#

Divide both sides by #3#.

#x=99/3##=#

#x=33#

Check the answer by substituting #33# for #x#.

#sqrt(3x+1)=-10#

#sqrt(3*33+1)=-10#

#sqrt100=-10#

#(-10)^2=100#

#sqrt100=+-10#, so #33# is a valid number for #x#.