How do you solve #cos^2x+2cos2x+1=0#?

1 Answer
Aug 25, 2015

Solve# f(x) = cos^2 x + 2cos 2x + 1 = 0#

Ans: #+- 63.43# and #+- 116.57# deg

Explanation:

Replace in the equation #cos 2x# by #(2cos^2 x - 1)#
#f(x) = cos^2 x + 4cos^2 x - 2 + 1 = 0#
#5cos^2 x - 1 = #
#cos^2 x = 1/5# --> #cos x = +- 1/sqrt5 = +- 0.48#

a. #cos x = 0.48# --> #x = +- 63.43# deg

b. #x = - 0.48# --> #x = +- 116.57#
Check by calculator:
x = 63.43 deg --># cos^2 x = 0.20# ; 2cos 2x = - 1.20.
f(x) = 0.20 - 1.20 + 1 = 0. OK
x = 116.57 --> #cos^2 x = 0.20# ; 2cos 2x = - 1.20.
f(x) = 0.20 - 1.20 + 1 = 0. OK