How do you find the general solutions for #3sec^2x + 4cos^2x = 7#?

1 Answer
Aug 29, 2015

Solve 3sec^2 x + 4cos^2 x = 7

Explanation:

Replace #sec^2 x# by #1/cos^2 x#
#3/cos^2 x + 4cos^2 x = 7#
#4cos^4 x - 7cos^2 x + 3 = 0# (Condition cos^2 x not zero)
Cal #cos^2 x = t#. We get a quadratic equation in t.
#4t^2 - 7t + 3 = 0.#
Since (a + b + c = 0), use the Shortcut. The 2 real roots are t = 1 and #t = 3/4.#
#t = cos^2 x = 1# --> #cos x = +- 1 #--> #x = 0, x = pi, and x = 2pi#

#t = cos^2 x = 3/4# --> #cos x = +- sqrt3/2 #

a. #cos x = sqrt3/2# --> #x = +- pi/6#
b. #cos x = -sqrt3/2 #--> #x = +- (5pi)/6#