Find the equation of circle with centre (1,-2),touching the line 4y-3x=5 using x²+y²-2xh-2ky+c as the general formula (answer=25x-50x+100y-131)?

1 Answer
Sep 17, 2015

#25x^2+25y^2-50x+100y-131=0#

Explanation:

Firstly we can find the perpendicular distance of the straight line #4y-3x=5# from center #(h,k)=(1,-2)# by using the equation;

distance#=|ah+bk+c|/sqrt(a^2+b^2)#

The value of #a#, #b#, and #c# can be obtained from #4y-3x=5#;

#4y-3x=5#

Rearrange, #3x-4y+5=0#

#a=3# , #b=-4# and #c=5#

And we will get;

distance#=|3(1)+(-4)(-2)+5|/sqrt((3)^2+(-4)^2)#

distance#=16/5#

You will then figure out that the distance#=16/5# is the radius, #r# of the circle. By substituting #r=16/5# and #(h,k)=(1,-2)# , you can use the equation;

#(x-h)^2+(y-k)^2=r^2#

#(x-1)^2+(y+2)^2=(16/5)^2#

Expand and you will get;

#x^2-2x+1+y^2+4y+4=256/25#

All values multiply by #25#;

#25x^2-50x+25+25y^2+100y+100=256#

#25x^2+25y^2-50x+100y-131=0#