How do evaluate sin 270 + cos (-180)? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Alan P. Oct 1, 2015 #sin(270^@)+cos(-180^@) = -2# Explanation: At #270^@# for a unit radius circle #color(white)("XXX")sin(270^@) = ("opposite")/("hypotenuse")# #color(white)("XXXXXXXXX")=y/sqrt(x^2+y^2)# #color(white)("XXXXXXXXX")=(-1)/sqrt(0^2+(-1)^2)# #color(white)("XXXXXXXXXX")=-1# At #-180^@# for a unit circle #color(white)("XXX")cos(-180^@) = ("adjacent")/("hypotenuse")# (arguing similar to above) #color(white)("XXXXXXXXXX")= -1# #sin(270^@)+cos(-180^@) = (-1)+(-1) = -2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 5663 views around the world You can reuse this answer Creative Commons License