How do you simplify #7x^3(2x^2)^2/(10x^5)#?

2 Answers

It is #7x^3(2x^2)^2/(10x^5)=7x^3*(4x^4)/(10x^5)=(28*x^7)/(10x^5)=14/5*x^2#

Oct 2, 2015

The answer is #(14x^2)/5#.

Explanation:

Simplify #7x^3(2x^2)^2/(10^5)# to #((7x^3)(2x^2)^2)/(10x^5)# .

#((7x^3)(2x^2)^2)/(10x^5)#

Apply the exponent rule #(a^m)^n=a^(m*n)#

#((7x^3)(4x^4))/(10x^5)#

Apply the exponent rule #a^mxxa^n=a^(m+n)#.

#(28x^(3+4))/(10x^5)=#

#(28x^7)/(10x^5)#

Apply the exponent rule #a^m/a^n=a^(m-n)#.

#(28x^(7-5))/10=#

#(28x^2)/10#

Reduce #28/10# to #14/5=#.

#(14x^2)/5#