How do you find f'(x) using the definition of a derivative for #f(x)=sqrt(1+2x)#?
1 Answer
Use definition:
#f'(a) = lim_(h->0) (f(a+h) - f(a))/h#
to find:
Explanation:
Let
Then the derivative at
#f'(a) = lim_(h->0) (f(a+h) - f(a))/h#
#= lim_(h->0) (sqrt(1+2(a+h)) - sqrt(1+2a))/h#
#= lim_(h->0) (sqrt(1+2(a+h)) - sqrt(1+2a))/h * (sqrt(1+2(a+h)) + sqrt(1+2a))/(sqrt(1+2(a+h)) + sqrt(1+2a))#
#= lim_(h->0) (sqrt(1+2(a+h)) - sqrt(1+2a))/h * (sqrt(1+2(a+h)) + sqrt(1+2a))/(sqrt(1+2(a+h)) + sqrt(1+2a))#
#= lim_(h->0) ((1+2(a+h)) - (1+2a))/(h(sqrt(1+2(a+h)) + sqrt(1+2a)))#
#= lim_(h->0) (2color(red)(cancel(color(black)(h))))/(color(red)(cancel(color(black)(h)))(sqrt(1+2(a+h)) + sqrt(1+2a)))#
#= lim_(h->0) 2/(sqrt(1+2(a+h)) + sqrt(1+2a))#
#= 2/(sqrt(1+2a) + sqrt(1+2a))#
#= 1/sqrt(1+2a)#
So