How do I find the vertex, axis of symmetry, y-intercept, x-intercept, domain and range of #y=x^2-10x+2#?
1 Answer
Oct 10, 2015
Vertex is
Axis of symmetry
Y-intercept
X- intercepts are
Explanation:
Vertex
#3x=(-b)/(2a)=(-(-10))/(2 xx 1)=10/2=5#
At
#y=5^2-10(5)+2#
#y=25-50+2#
#=27-50#
#y=-23#
Vertex is#(5,-23)#
Axis of symmetry#x=5#
Y-intercept
At
#y=0^2-10(0)+2#
#y=2#
X-intercept
At
#x=(-b+- sqrt(b^2-(4ac)))/(2a)#
#x=(-(-10)+- sqrt((-10)^2-(4 xx 1 xx 2)))/(2 xx 1)#
#x=(10+- sqrt(100-8))/(2)#
#x=(10+- sqrt(92))/(2)#
#x=(10+- 9.6)/(2)#
#x=(10+9.6)/2=19.6/2=9.8#
#x=(10-9.6)/2=0.4/2=0.2#
X- intercepts are
graph{x^2-10x+2 [-58.5, 58.55, -29.25, 29.25]}