What are the asymptotes for the function #y= ((x-3)(x+4))/(x+2)# ?

1 Answer
Oct 13, 2015

#x=-2# and #y=x-1#

Explanation:

#y= ((x-3)(x+4))/(x+2)#

Vertical
#lim_(xrarr-2) abs(((x-3)(x+4))/(x+2)) = oo#, so
#x=-2# is an asymptote.

Horizontal
None

Oblique

#((x-3)(x+4))/(x+2)= x-1-10/(x+2)#

So #y=x-1# is an oblique asymptote.