How do you find the maclaurin series expansion of #f(x)= (2x^2)sin(4x)#?

1 Answer
Oct 17, 2015

Substitute #4x# into the well-known Maclaurin series for #sin(x)# and then multiply everything by #2x^2# to get: #f(x)=2x^2sin(4x)=8x^3-64/3 x^5+256/15 x^7-2048/315 x^9+cdots# for all #x#.

Explanation:

We know #sin(x)=x-x^3/(3!)+x^5/(5!)-x^7/(7!)+cdots# for all #x#. Therefore,

#sin(4x)=4x-(4x)^3/(3!)+(4x)^5/(5!)-(4x)^7/(7!)+cdots#

#=4x-64/6 x^3+1024/120 x^5-16384/5040 x^7+cdots#

#=4x-32/3 x^3+128/15 x^5-1024/315x^7+cdots# for all #x#.

Hence,

#f(x)=2x^2sin(4x)=8x^3-64/3 x^5+256/15 x^7-2048/315 x^9+cdots# for all #x#.