How do you find f'(x) using the definition of a derivative for #f(x)=cosx#?
2 Answers
Explanation:
According to the definition:
If we use this definition for
For further calculation we will use the identity:
So the left limit is
Here is an alternative using
Explanation:
# = lim_(hrarr0)(cosxcos h-sinxsin h-cosx)/h#
# = lim_(hrarr0)(cosxcos h-cosx-sinxsin h)/h#
# = lim_(hrarr0)(cosxcos h-cosx)/h-(sinx sin h)/h)#
# = lim_(hrarr0)(cosx(cos h-1)/h-sinx (sin h)/h)#
# = [lim_(hrarr0)cosx] [lim_(hrarr0)(cos h-1)/h]-[lim_(hrarr0)sinx][ lim_(hrarr0)(sin h)/h]#
(Provided that these 4 limits exist, which they do.)
# = [0][1]-[sinx][1] = -sinx#
That is: