What is the inverse function of #g(x)=3sqrt(x-8)#?

1 Answer
Oct 27, 2015

If #h(x)# is the inverse of #g(x)#
then #h(x) = (x^2+72)/9#

Explanation:

Note that if #h(x)# is the inverse of #g(x)#
#color(white)("XXX")g(h(x))=x#
and
substituting #h(x)# for #x# in the original definition of #g(x)#
#color(white)("XXX")g(h(x)) = 3sqrt(h(x)-8)#

Therefore
#color(white)("XXX")3sqrt(h(x)-8)=x#

#color(white)("XXX")sqrt(h(x)-8) = x/3#

#color(white)("XXX")h(x)-8 = x^2/9#

#color(white)("XXX")h(x) = (x^2+72)/9#