What is #int 6x^5 -2x^4 + 3x^3 + x^2 - x-2 dx#?

1 Answer
Nov 1, 2015

#int(6x^5-2x^4+3x^3+x^2-x-2)dx#
#=x^6-frac{2x^5}{5}+frac{3x^4}{4}+frac{x^3}{3}-frac{x^2}{2}-2x+c,# where #c# is the constant of integration

Explanation:

#int(6x^5-2x^4+3x^3+x^2-x-2)dx#
#=int(6x^5)dx-2intx^4dx+3intx^3dx#
#+intx^2dx-intxdx-2intdx#
#=x^6-frac{2x^5}{5}+frac{3x^4}{4}+frac{x^3}{3}-frac{x^2}{2}-2x+c,# where #c# is the constant of integration