How do you divide #(x^2 - 3xy + 2y^2 + 3x - 6y - 8) / (x-y+4)#?

1 Answer
Nov 1, 2015

You can choose to end up with no #x# in the remainder or no #y#...

#(x^2-3xy+2y^2+3x-6y-8)/(x-y+4)#

#= (x-2y-1)# with remainder #-7y-4#

#= (x-2y-2)# with remainder #x#

Explanation:

Try to match the higher degree terms in the dividend with multiples of the divisor as follows:

#x(x-y+4) = x^2-xy+4x#

#-2y(x-y+4) = -2xy+2y^2-8y#

So:

#(x-2y)(x-y+4) = x^2-3xy+2y^2+4x-8y#

Then:

#-1(x-y+4) = -x+y-4#

or

#-2(x-y+4) = -2x+2y-8#

So we find:

#x^2-3xy+2y^2+3x-6y-8 = (x-2y-1)(x-y+4)-7y-4#

Or:

#x^2-3xy+2y^2+3x-6y-8 = (x-2y-2)(x-y+4)+x#

So no choice of quotient allows us to eliminate both #x# and #y# from the remainder.

I suspect the #+3x# in the question should have been #+4x#