Standard form of the equation is
#y=ax^2+bx+c#
Note that #a# could be of value 1
If #a# is positive then the graph is a horse shoe shape with the curve at the bottom. If negative then the other way round.
Square the bracket and then add the 1 giving:
#y=x^2 - 6x +4#
Using standard form equation
#x" of "(x,y)_("minimum")" is "(-1/2) times b/a#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So for your case we have:
#color(green)(x" of "(x,y)_("minimum") =(-1/2) times (-6) = color(green)(+3))#
#color(red)("substitute "x=3" in your equation to find "y_("minimum"))#
#y = (3)^2 -6(3)+4#
#y =13 - 18#
#y = -5#
#color(green)(y" of " (x,y)_("minimum")=(-5)#
Putting it all together
#color(green)( (x,y)_("minimum")=(3,-5)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("To find x-intercepts substitute y=0 and solve")#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("To find y-intercepts substitute x=0 and solve")#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~