How do you solve log_2 x+log_4 x=log_2 5?
1 Answer
Nov 2, 2015
Explanation:
Note that
log _2 x+log_4x = log_2 5
implies (lnx)/(ln2) + (lnx)/(ln2^2) = (ln5)/(ln2)
implies (lnx)/(ln2) + (lnx)/(2ln2) = (ln5)/(ln2)
implies(lnx)/(ln2)(1+1/2) = (ln5)/(ln2)
implies lnx = 2/3 ln5
implies lnx = ln5^(2/3)
implies x = 5^(2/3)