Using the limit definition, how do you differentiate #f(x)=1-x^2#?

1 Answer
Nov 3, 2015

If #f(x) = 1-x^2# then #(d f(x))/(dx) = -2x#

Explanation:

The limit definition of the derivative of a function #f(x)# is
#color(white)("XXX")(d f(x))/(dx) = lim_(hrarr0) (f(x+h)-f(x))/h#

If #f(x) = 1-x^2#
#color(white)("XXX")#then (by the limit definition)
#(d f(x))/(dx)#
#color(white)("XXX")=lim_(hrarr0) ((1-(x+h)^2)-(1-x^2))/h#

#color(white)("XXX")= lim_(hrarr0) (1-x^2-2xh-h^2-1+x^2)/h#

#color(white)("XXX")=lim_(hrarr0)(-2xh-h^2)/h#

#color(white)("XXX")=lim_(hrarr0) -2x-h#

#color(white)("XXX")=-2x#