How do you differentiate f(x) = x/sinx?

1 Answer
Nov 4, 2015

f'(x)=(sinx-xcosx)/(sin^2x)

Explanation:

you have a function like this

y=u/v

Then you have to use this Equation

y'=(u'*v-u*v')/v^2

f(x)=x/(sinx)

f'(x)=(x'*sinx-x*sinx')/(sinx)^2

f'(x)=(1*sinx-x*cosx)/(sinx)^2=(sinx-xcosx)/(sin^2x)