What is #int_1^oo 1/2^x dx#?
1 Answer
Nov 8, 2015
Explanation:
#2^t = e^(ln(2)t)#
So:
#1/(2^x) = e^(-ln(2)x)#
#d/dx (1/2^x) = d/dx (e^(-ln(2)x)) = -ln(2) e^(-ln(2)x) = -ln(2) 1/2^x#
So:
#int 1/(2^x) dx = -1/(ln(2)2^x) + C#
And:
#int_1^oo 1/2^x dx = [-1/(ln(2)2^x) ]_1^oo = 1/(2 ln(2)) ~~ 0.721#