What is #lim_(xrarroo)(ln(9x+10)-ln(2+3x^2))#?

1 Answer
Nov 8, 2015

#lim_(xrarroo)(ln(9x+10)-ln(2+3x^2)) = -oo#

Explanation:

#lim_(xrarroo)(ln(9x+10)-ln(2+3x^2)) = lim_(xrarroo)ln((9x+10)/(3x^2+2))#

Note that #lim_(xrarroo)((9x+10)/(3x^2+2)) = 0#.

And recall that #lim_(urarr0^+)lnu = -oo#, so

#lim_(xrarroo)(ln(9x+10)-ln(2+3x^2)) = lim_(xrarroo)ln((9x+10)/(3x^2+2)) = -oo#

Note

The function goes to #-oo# as #xrarroo#, but it goes very, very slowly. Here is the graph:

graph{(ln(9x+10)-ln(2+3x^2)) [-23.46, 41.47, -21.23, 11.23]}