How do you simplify #i^64#?

1 Answer
Nov 15, 2015

I found: #i^64=1#

Explanation:

I know that:
#i^1=sqrt(-1)=i#
#i^2=(sqrt(-1))^2=-1#
#i^3=i*i^2=i*-1=-i#
#i^4=i^2*i^2=-1*-1=1#
#i^5=i*i^2*i^2=i*(-1)*(-1)=i# AGAIN
#i^6=i^2*i^2*i^2=(-1)(-1)(-1)=-1#
now it repeats the same pattern: #i,-1,-i,1# every 4.

You have #i^64=(i^8)^2=(i^4*i^4)^2=(1*1)^2=1#