How do you divide #(20x^4+(5-12i)x^3-(25+3i)x^2+15ix)/(5x-3i)# ?
2 Answers
#(20x^4+(5-12i)x^3-(25+3i)x^2+15ix)/(5x-3i) = 4x^3+x^2-5x#
Explanation:
The first term in the quotient is
Then
Subtract this from the dividend:
#(20x^4+(5-12i)x^3-(25+3i)x^2+15ix)-(20x^4-12ix^3)#
#=5x^3-(25+3i)x^2+15ix#
The next term in the quotient is
Then
Subtract this from the remainder:
#(5x^3-(25+3i)x^2+15ix)-(5x^3-3ix^2)=-25x^2+15ix#
The next term in the quotient is
Then
...equalling the remainder.
So:
#(20x^4+(5-12i)x^3-(25+3i)x^2+15ix)/(5x-3i)#
#= 4x^3+x^2-5x#