How do you differentiate #f(x)= ln(x^2/(3-x))#?

1 Answer
Nov 16, 2015

#frac(x-6)(x(x-3))#

Explanation:

According to the Chain Rule, #d/(dx)[lnu]=(u')/u#.
Therefore, #f'(x)=frac(d/(dx)[x^2/(3-x)])(x^2/(3-x))#.

We will have to use the Quotient Rule.
#d/(dx)[x^2/(3-x)]=(d/(dx)[x^2]*(3-x)-x^2*d/(dx)[3-x])/(3-x)^2#
#=(2x(3-x)-x^2(-1))/(3-x)^2=(-x^2+6x)/(3-x)^2#

#f'(x)=((-x^2+6x)/(3-x)^2)/(x^2/(3-x))=(-x^2+6x)/(3-x)^2((3-x)/x^2)=(x(6-x))/(x^2(3-x))#
#color(blue)(f'(x)=frac(6-x)(x(3-x))=frac(x-6)(x(x-3))#