How do you differentiate #f(x)=(2x)/(sqrt(5x^2 -2x + 1))# using the quotient rule?

1 Answer
Nov 16, 2015

#-(2(x-1))/(5x^2-2x+1)^(3/2)#

Explanation:

According to the quotient rule,
#f'(x)=(d/(dx)[2x]*(5x^2-2x+1)^(1/2)-2x*d/(dx)[(5x^2-2x+1)^(1/2)])/(5x^2-2x+1)#

Let's first calculate the two derivatives inside.
#d/(dx)[2x]=2#

The second requires the chain rule.
#d/(dx)[(5x^2-2x+1)^(1/2)]#
#=1/2(5x^2-2x+1)^(-1/2)*d/(dx)[5x^2-2x+1]#
#=(10x-2)/(2(5x^2-2x+1)^(1/2))=(5x-1)/(5x^2-2x+1)^(1/2)#

Plug those back in.
#f'(x)=(2(5x^2-2x+1)^(1/2)-(2x(5x-1))/(5x^2-2x+1)^(1/2))/(5x^2-2x+1)#
#=(2(5x^2-2x+1)-2x(5x-1))/(5x^2-2x+1)^(3/2)#
#=(cancel(10x^2)-4x+2cancel(-10x^2)+2x)/(5x^2-2x+1)^(3/2)#
#=color(blue)(-(2(x-1))/(5x^2-2x+1)^(3/2)#