What is the equation of the tangent line of #f(x)= x-x^-5# at # x=-4#?

1 Answer
Nov 17, 2015

#y = (1+5*(-4)^(-6))x - 6*(-4)^(-5)#

Explanation:

We have

#y = x - x^(-5)#

Derivating it we have

#dy/dx = 1 + 5x^(-6)#

So, we know the tangent line will have, for slope

#dy/dx|_(x=-4) = 1 + 5*(-4)^(-6)#

We also know, that, by definition, the tangent line will pass through the point #P(-4,f(-4))#, so we have

#(1+5*(-4)^(-6))*(-4) + b = -4 -(-4)^(-5)#
#b = -4 -(-4)^(-5) - (-4)(1+5\*(-4)^(-6))#
#b = (-4)(1 - (-4)^(-6) - 1 - 5\*(-4)^(-6))#
#b = (-4)(-6\*(-4)^(-6))#
#b = -6\*(-4)^(-5)#

So the tangent line is

#y = (1+5*(-4)^(-6))x - 6*(-4)^(-5)#