How do you simplify #sqrt256 - sqrt128 + sqrt8#?

1 Answer
Nov 24, 2015

#=color(blue)(16 -6sqrt2 #

Explanation:

#sqrt(256) -sqrt128+sqrt8#

We prime factorise all the terms of the expression.

#sqrt256 =sqrt(2*2*2*2*2*2*2*2) =sqrt(16*16)=sqrt(16^2)=color(blue)(16#

#sqrt128=sqrt(2*2*2*2*2*2*2)=sqrt(2^6*2)=2^3sqrt2=color(blue)(8sqrt2#

#sqrt8=sqrt(2*2*2)=color(blue)(2sqrt2#

The expression can now be written as:
#color(blue)(16 - 8sqrt2 +2sqrt2#

#=color(blue)(16 -6sqrt2 #