What is #int 2sec^2xtanxdx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Tom Nov 25, 2015 #[tan^2(x)]+C# Explanation: #2intsec^2(x)tan(x) dx# #t = tan(x)# #dt = sec^2(x)dx# #2inttdt# #[t^2]+C# And then substitute back Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1803 views around the world You can reuse this answer Creative Commons License