How do you solve #2^ logx = 1/4#?

1 Answer
Nov 27, 2015

#x = 1/100# or #x = 1/e^2# depending on whether #log# refers to #log_10# or #log_e#.

Explanation:

We will use the following:

  • #log_a(a) = 1#

  • #log(a^x) = xlog(a)#

  • #a^(log_a(x)) = x#


#2^log(x) = 1/4 = 2^(-2)#

#=> log_2(2^log(x)) = log_2(2^(-2))#

#=> log(x)log_2(2) = -2log_2(2)#

#=>log(x) = -2#

(Depending on the context, #log# may refer to #log_10# or #log_e#. We will show both cases.)

#=> 10^(log_10(x)) = 10^(-2)# or #e^(log_e(x)) = e^(-2)#

#=>x = 10^(-2) = 1/100# or #x = e^-2 = 1/e^2#