How do you factor #3(x-4)^2+16(x-4) -12#?
2 Answers
Factor as a quadratic in
#3(x-4)^2+16(x-4)-12 = (x+2)(3x-14)#
Explanation:
One way is to leave the
#3(x-4)^2+16(x-4)-12#
#=3(x-4)^2-2(x-4)+18(x-4)-12#
#=(3(x-4)^2-2(x-4))+(18(x-4)-12)#
#=(x-4)(3(x-4)-2)+6(3(x-4)-2)#
#=((x-4)+6)(3(x-4)-2)#
#=(x+2)(3x-14)#
Another way of expressing this solution is to substitute
#3(x-4)^2+16(x-4)-12#
#=3t^2+16t-12#
#=3t^2-2t+18t-12#
#=(3t^2-2t)+(18t-12)#
#=t(3t-2)+6(3t-2)#
#=(t+6)(3t-2)#
#=((x-4)+6)(3(x-4)-2)#
#=(x+2)(3x-14)#
Alternatively, multiply out the original quadratic and simplify before factoring to find:
#3(x-4)^2+16(x-4)-12 = (x+2)(3x-14)#
Explanation:
#3(x-4)^2+16(x-4)-12#
#=3(x^2-8x+16)+16(x-4)-12#
#=3x^2-24x+48+16x-64-12#
#=3x^2-8x-28#
Look for a pair of factors of
The pair
So:
#3x^2-8x-28#
#=3x^2-14x+6x-28#
#=(3x^2-14x)+(6x-28)#
#=x(3x-14)+2(3x-14)#
#=(x+2)(3x-14)#