#2^x=5^(x+6)# #=>log_5 2^x=x+6# (logarithm definition) #xlog_5 2=x+6# (the logarithm of the power of a number)
Divide both sides into #x#: #=>1/x*(xlog_5 2)=1/x*(x+6)# #=>(x+6)/x=log_5 2#
Add #-1# to both sides: #(x+6)/x-1=log_5 2-1# #=>6/x=log_5 2-1# #=>x=6/(log_5 2-1)# #=6/(log_5 2-log_5 5)# #=6/log_5 (2/5)# #=6log_(2/5)5#