What is #7^6 -: 7^3#?

1 Answer
Dec 6, 2015

#343#

Explanation:

#(7xx7xx7xx7xx7xx7)/(7xx7xx7)=(7xx7xx7xxcancel(7)xxcancel(7)xxcancel(7))/(cancel(7)xxcancel(7)xxcancel(7))=7xx7xx7=7^3#

This gives us the following rule:

#(a^b)/(a^c)=a^(b-c)#

In this case:

#7^6/7^3=7^(6-3)=7^3=343#