Describe a sequence of transformations that transform the graph of f(x) into the graph of g(x)? #f(x)=sqrtx# and #g(x)=-3(sqrt(x+1))-4#
2 Answers
Explanation:
1) Translation.
Just send
And
2) Stretch.
Just send
This is a dilatation (multiply by 3)
followed by a refraction (multiply by -1). The mirror is x-axis.
3) Translation.
Just send
Therefore
And
graph{sqrtx [-1.705, 18.295, -3.44, 6.56]}
Function shifts one to the left.
graph{sqrt(x+1) [-2.16, 17.84, -2.08, 7.92]}
Function is stretched vertically by a factor of
graph{3sqrt(x+1) [-2.08, 33.48, -2.43, 15.35]}
Function is reflected across the
graph{-3sqrt(x+1) [-3.42, 32.14, -15.24, 2.54]}
Function is moved
graph{-3sqrt(x+1)-4 [-4.75, 35.25, -16.85, 3.15]}