What is the standard form of #y= (5x + 2)(6x+8) #?

1 Answer
Dec 12, 2015

#y=30x^2+52x+16#

Explanation:

The standard form for a quadratic is
#color(white)("XXX")y=ax^2+bx+c#
(with constants #a, b, c#)

The given form: #y=(5x+2)(6x+8)#
can easily be converted to this standard form by multiplying the factors on the right side.

There are several ways that the multiplication can be done:

Using the Distributive Property
#(5x+2)(6x+8)#
#color(white)("XXX")=5x(6x+8)+2(6x+8)#
#color(white)("XXX")=(30x^2+40x)+(12x+16)#
(then combining like terms:)
#color(white)("XXX")30x^2+52x+16#

#"------------------------------------------------------------------------"#

FOIL
#color(white)("XX"){: (color(red)("Multiply"),,), ("First terms:", 5x xx 6x, = 30x^2), ("Outside terms:", 5x xx 8, =40x), ("Inside terms:",2 xx 6x, = 12x), ("Last terms:", 2 xx 8, =16), (color(red)("Add"),,), (,,color(blue)(30x^2+52x+16)) :}#

#"------------------------------------------------------------------------"#

Tabular Multiplication
#{: (xx,"|",5x,+2), ("----",,"----","----"), (6x,"|",color(orange)(30x^2),color(green)(+12x)), (+8,"|",color(green)(40x),color(cyan)(+16)), ("----","----","----","----"), (,color(orange)(30x^2),color(green)(+52x),color(cyan)(+16)) :}#