What are the first and second derivatives of # g(x) =ln(sinx)-sin(lnx)#?

1 Answer
Dec 12, 2015

#g'(x)=cotx-(cos(lnx))/x#

#g''(x)=csc^2x+(sin(lnx)+cosln(x))/x^2#

Explanation:

According to the chain rule:

#d/dx[ln(u)]=(u')/u#

#d/dx[sin(u)]=u'cos(u)#

Thus,

#d/dx[ln(sinx)]=(d/dx[sinx])/sinx=cosx/sinx=cotx#

#d/dx[sin(lnx)]=d/dx[lnx]cos(lnx)=(cos(lnx))/x#

#g'(x)=cotx-(cos(lnx))/x#

To find #g''(x)#, find the derivative of each part.

#d/dx[cotx]=-csc^2x#

#d/dx[(cos(lnx))/x]=(xd/dx[cos(lnx)]-cos(lnx)d/dx[x])/x^2#

Find each derivative.

#d/dx[cos(lnx)]=-sin(lnx)/x#

#d/dx[x]=1#

Plug back in:

#d/dx[(cos(lnx))/x]=(-sin(lnx)-cosln(x))/x^2#

Thus,

#g''(x)=csc^2x+(sin(lnx)+cosln(x))/x^2#