What is the second derivative of #f(x)=tan(3x)#?

1 Answer
Dec 14, 2015

#f''(x)=18sec^2(3x)tan(3x)#

Explanation:

We will use the chain rule, together with the derivatives:

  • #d/dx tan(x) = sec^2(x)#

  • #d/dx 3x = 3#

  • #d/dx x^2 = 2x#

  • # d/dx sec(x) = sec(x)tan(x)#

First Derivative:
#f'(x) = d/dx tan(3x)#

#= sec^2(3x)(d/dx3x)#

#= 3sec^2(3x)#

Second Derivative:

#f''(x) = d/dx(f'(x))#

#= d/dx(3sec^2(3x))#

#= 3d/dx(sec^2(3x))#

#= 3(2sec(3x))(d/dxsec(3x))#

#=6sec(3x)(sec(3x)tan(3x))(d/dx3x)#

#=18sec^2(3x)tan(3x)#