How do you factor the expression #4x^3 + 6x^2 + 6x + 9#?
1 Answer
Dec 24, 2015
Factor by grouping to find:
#4x^3+6x^2+6x+9=(2x^2+3)(2x+3)#
Explanation:
Factor by grouping:
#4x^3+6x^2+6x+9#
#=(4x^3+6x^2)+(6x+9)#
#=2x^2(2x+3)+3(2x+3)#
#=(2x^2+3)(2x+3)#
The remaining quadratic factor
#2x^2+3 >= 3 > 0#
If we resort to Complex numbers then it factorises further:
#(2x^2+3) = (sqrt(2)x-sqrt(3)i)(sqrt(2)x+sqrt(3)i)#