What is the derivative of #f(x)=(1/x+lnx)^2#?

1 Answer
Dec 26, 2015

We'll need chain rule, here.

Explanation:

Chain rule states that #(dy)/(dx)=(dy)/(du)(du)/(dx)# and is used when it is not possible to directly derivate the function we have.

So, renaming #u=1/x+lnx#, we get:

#(dy)/(dx)=2u*(-1/x^2+1/x)#

#(dy)/(dx)=2(1/x+lnx)(-1/x^2+1/x)#

#(dy)/(dx)=2(-1/x^3+(1-lnx)/x^2+lnx/x)#