What is the second derivative of #f(x)=x/(x^2 + 1) ^2#?

1 Answer
Dec 26, 2015

#f''(x)=(12x(x^2-1))/(x^2+1)^4#

Explanation:

Use the quotient rule: for a function #f(x)=(g(x))/(h(x))#,

#f'(x)=(g'(x)h(x)-h'(x)g(x))/(h(x))^2#

#g(x)=x#
#h(x)=(x^2+1)^2#

#g'(x)=1#
#h'(x)=4x(x^2+1)#

Thus,

#f'(x)=(1(x^2+1)^2-4x(x^2+1)(x))/(x^2+1)^4#

Simplify.

#f'(x)=((x^2+1)(x^2+1-4x^2))/(x^2+1)^4#

#f'(x)=(1-3x^2)/(x^2+1)^3color(white)(sss)# First Derivative

To find the second derivative, use the quotient rule again.

#g(x)=1-3x^2#
#h(x)=(x^2+1)^3#

#g'(x)=-6x#
#h'(x)=6x(x^2+1)^2#

Thus,

#f''(x)=(-6x(x^2+1)^3-6x(x^2+1)^2(1-3x^2))/(x^2+1)^6#

Simplify.

#f''(x)=(-6x(x^2+1)^2(x^2+1+1-3x^2))/(x^2+1)^6#

#f''(x)=(-6x(-2x^2+2))/(x^2+1)^4#

#f''(x)=(12x(x^2-1))/(x^2+1)^4color(white)(sss)# Second Derivative

The main two pitfalls here are

  1. algebra
  2. remembering to use the chain rule when differentiating things like # (x^2+1)^2#