What is the standard form of #y= (4x-4)(x^2+5x-5)#?

1 Answer
Dec 27, 2015

#y=4x^3+16x^2-40x+20#

Explanation:

For convenience, separate out the scalar factor #4# temporarily while multiplying out, group the terms in descending degree and combine. For illustration I have shown more steps than normal:

#(4x-4)(x^2+5x-5)#

#=4(x-1)(x^2+5x-5)#

#=4(x(x^2+5x-5)-1(x^2+5x-5))#

#=4((x^3+5x^2-5x)-(x^2+5x-5))#

#=4(x^3+5x^2-5x-x^2-5x+5)#

#=4(x^3+(5x^2-x^2)+(-5x-5x)+5)#

#=4(x^3+(5-1)x^2+(-5-5)x+5)#

#=4(x^3+4x^2-10x+5)#

#=4x^3+16x^2-40x+20#

Alternatively, just look at the combinations of terms to give each power of #x# in descending order like this:

#(4x-4)(x^2+5x-5)#

#=4x^3+(20-4)x^2-(20+20)x+20#

#=4x^3+16x^2-40x+20#