How do you factor the expression #3x - 9x^3#?
1 Answer
Dec 28, 2015
#3x-9x^3#
#= 3x(1-3x^2)#
#= 3x(1-sqrt(3)x)(1+sqrt(3)x)#
#= x(sqrt(3)-3x)(sqrt(3)+3x)#
Explanation:
We can use the difference of squares identity:
#a^2-b^2=(a-b)(a+b)#
to factor with irrational coefficients.
First notice that both terms are divisible by
#3x-9x^3#
#= 3x(1-3x^2)#
#= 3x(1^2-(sqrt(3)x)^2)#
#= 3x(1-sqrt(3)x)(1+sqrt(3)x)#
Or if you prefer, split that factor of
#3x-9x^3#
#= x(3-9x^2)#
#= x((sqrt(3))^2-(3x)^2)#
#= x(sqrt(3)-3x)(sqrt(3)+3x)#