How do you find the maclaurin series expansion of # f(x) = (1-cosx)/x#?
1 Answer
Jan 1, 2016
Start from the Maclaurin series for
#(1 - cos(x))/x = sum_(k=0)^oo (-1)^k/((2k+2)!) x^(2k+1) = x/(2!) - x^3/(4!) + ...#
Explanation:
Note that:
#d/(dx) cos(x) = -sin(x)#
#d/(dx) sin(x) = cos(x)#
#sin(0) = 0#
#cos(0) = 1#
Hence the Maclaurin series for
#cos(x) = sum_(k=0)^oo (-1)^k/((2k)!) x^(2k) = 1 - x^2/(2!) + x^4/(4!) -...#
So:
#1 - cos(x) = sum_(k=0)^oo (-1)^k/((2k+2)!) x^(2k+2) = x^2/(2!) - x^4/(4!) + ...#
Hence:
#(1 - cos(x))/x = sum_(k=0)^oo (-1)^k/((2k+2)!) x^(2k+1) = x/(2!) - x^3/(4!) + ...#