What is the standard form of # y= (x-6)(x-4)(x-1)#?
1 Answer
Explanation:
To rewrite the equation in standard form, start by expanding the first two brackets:
#y=(color(red)x# #color(green)(-6))(color(orange)x# #color(blue)(-4))(x-1)#
#y=(color(red)x(color(orange)x)# #color(red)(+x)(color(blue)(-4))# #color(orange)(+x)(color(green)(-6))# #color(green)(-6)(color(blue)(-4)))(x-1)#
Simplify.
#y=(x^2-4x-6x+24)(x-1)#
#y=(x^2-10x+24)(x-1)#
Expand the remaining two brackets:
#y=(color(red)(x^2)# #color(orange)(-10x)# #color(blue)(+24))(color(green)x# #color(purple)(-1))#
#y=color(red)(x^2)(color(green)x)# #color(red)(+x^2)(color(purple)(-1))# #color(orange)(-10x)(color(green)x)# #color(orange)(-10x)(color(purple)(-1))# #color(blue)(+24)(color(green)x)# #color(blue)(+24)(color(purple)(-1))#
Simplify.
#y=x^3-x^2-10x^2+10x+24x-24#
#y=x^3-11x^2+34x-24#