What is the derivative of #f(x)=-3sin(6x)*cos^2(3x)#?
1 Answer
Jan 2, 2016
Explanation:
Use product rule.
#f'(x)=cos^2(3x)d/dx(-3sin(6x))-3sin(6x)d/dx(cos^2(3x))#
Find each derivative separately, using chain rule each time.
#d/dx(-3sin(6x))=-3cos(6x)*6=-18cos(6x)#
This one requires you to deal with the exponent first, then the cosine function.
#d/dx(cos^2(3x))=2cos(3x)d/dx(cos(3x))#
#=2cos(3x) * -sin(3x) * 3=-6sin(3x)cos(3x)#
Plug these back in to find
#f'(x)=cos^2(3x) * -18cos(6x)-3sin(6x) * -6sin(3x)cos(3x)#
#=18cos(3x)(sin(3x)sin(6x)-cos(3x)cos(6x))#