What is the derivative of #f(x)=-3sin(6x)*cos^2(3x)#?

1 Answer
Jan 2, 2016

#f'(x)=18cos(3x)(sin(3x)sin(6x)-cos(3x)cos(6x))#

Explanation:

Use product rule.

#f'(x)=cos^2(3x)d/dx(-3sin(6x))-3sin(6x)d/dx(cos^2(3x))#

Find each derivative separately, using chain rule each time.

#d/dx(-3sin(6x))=-3cos(6x)*6=-18cos(6x)#

This one requires you to deal with the exponent first, then the cosine function.

#d/dx(cos^2(3x))=2cos(3x)d/dx(cos(3x))#

#=2cos(3x) * -sin(3x) * 3=-6sin(3x)cos(3x)#

Plug these back in to find #f'(x)#.

#f'(x)=cos^2(3x) * -18cos(6x)-3sin(6x) * -6sin(3x)cos(3x)#

#=18cos(3x)(sin(3x)sin(6x)-cos(3x)cos(6x))#