How do you differentiate #f(x)=csc3x * cos2x# using the product rule?
1 Answer
Jan 2, 2016
Explanation:
The product rule states that
#d/dx[f(x)g(x)]=f'(x)g(x)+g'(x)f(x)#
Thus,
#f'(x)=cos2xd/dx(csc3x)+csc3xd/dx(cos2x)#
Find each derivative, using the chain rule both times. Recall that
#d/d(cscu)=-u'cscucotu# and#d/dx(cosu)=-u'sinu#
Therefore,
#d/dx(csc3x)=-3csc3xcot3x#
and
#d/dx(cos2x)=-2sin2x#
Plug these back in.
#f'(x)=-3csc3xcot3xcos2x-2sin2xcsc3x#
#=-csc3x(3cot3xcos2x+2sin2x)#