Solution
f(x)=arcsin(2x+1)f(x)=arcsin(2x+1)
let
y=f(x)y=f(x) (I just find it easier to explain in this notation.)
We know that
d/dx(arcsin(x))=1/sqrt(1-x^2)ddx(arcsin(x))=1√1−x2 (See below for derivation)
apply chain rule
so
dy/dx=dy/(du)*(du)/(dx)dydx=dydu⋅dudx
and let
u=2x+1u=2x+1
so
y=arcsin(u)y=arcsin(u)
dy/(du)=1/sqrt(1-u^2)dydu=1√1−u2
u=2x+1u=2x+1
(du)/(dx)=2dudx=2
So
dy/dx=(1/sqrt(1-u^2))*2dydx=(1√1−u2)⋅2
u^2=4x^2 +4x +1u2=4x2+4x+1
dy/dx=2/sqrt(1-4x^2-4x-1)dydx=2√1−4x2−4x−1
dy/dx=2/sqrt(-4x(x+1))dydx=2√−4x(x+1)
dy/dx=2/(2sqrt(-x(x+1))dydx=22√−x(x+1)
dy/dx=1/sqrt(-x(x+1))dydx=1√−x(x+1)
Standard result for the derivative of arcsine function derivation.
let
y=arcsin(x)y=arcsin(x)
therefore
x=sinyx=siny
differentiate implicitly with respect to x
1=cosydy/dx1=cosydydx
rearrange
dy/dx=1/cosydydx=1cosy
use fundamental trig identity:
(sinx)^2 + (cosx)^2 =1(sinx)2+(cosx)2=1
so
cosy=sqrt(1-(siny)^2)cosy=√1−(siny)2
but
x=sinyx=siny
so
cosy=sqrt(1-x^2)cosy=√1−x2
therefore
dy/dx=1/sqrt(1-x^2)dydx=1√1−x2