What are the first and second derivatives of # g(x) = lncscx#?
1 Answer
Jan 2, 2016
Explanation:
According to the chain rule,
#d/dx(ln(u))=1/u*(du)/dx#
Thus,
#d/dx(ln(cscx))=1/cscx*d/dx(cscx)#
#=>1/cscx*(-cscxcotx)#
#=>-cotx=g'(x)#
To find the second derivative, know that
Thus,
#d/dx(-cotx)=csc^2x=g''(x)#