What is the equation of the tangent line of #f(x) =cos^2x/e^x-xtanx# at #x=pi/4#?

1 Answer
Jan 3, 2016

#y+0.5574=-3.2547(x-0.7854)#

Explanation:

First, find the point the tangent line will intersect. I'll be using decimals since there is no clean way to simplify this by any means.

#f(pi/4)=-0.5574#

The tangent line will intersect the point #(0.7854,-0.5574)#.
(Replacing #pi/4# with #0.7854#.)

To find the slope of the tangent line, find #f'(pi/4)#.

To find #f'(x)#, use quotient rule for the first term and product rule for #xtanx#.

#f'(x)=(2cosx(-sinx)e^x-e^xcos^2x)/e^(2x)-tanx-xsec^2x#

#=(-cosx(2sinx+cosx))/e^x-tanx-xsec^2x#

Plug in #pi/4#.

#f'(pi/4)=-3.2547#

Plug the point and slope into an equation in point-slope form:

#y+0.5574=-3.2547(x-0.7854)#